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ABSTRACT

T he purpI-ose of this thcsis is to find suitable ways to design fleedback compensators

for igh order systems by using Root-Locus methods.

As a starting point wve will examinc a motor arnplidyne system and a position con-
trol system that were prcviously designed us;n oemtos hnvegnrlz h

methiod and extend it to other sy.stems.

The filial subj"Ct Of this thekis is to design feedback compensators as filters by' uISing

state fecedback coefficients to define zeros of the filter, then we extend this idea to build

cascade filters.
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I. INTRODUCTION

Modern control systems may be compensated by placing a suitable filter in either

the forward (cascade) path or in a feedback path.

.Mainly fecdback svstemr have the advantage that the output follows the command

more accurately, so the steady state error is less. the bandwidth is greater, and the speced
of response is faster. Also we can say that the eflect of external disturbances and internal

changes in the parameters or structure of the system is significantly reduced.

The conventional and more common way to design a Feedback compensator to

meet a given set of specifications is the Bode plot method, by determining a suitable gain
cross-over frequency and I I I .ure.

In this thesis we will try to find some rules to do the same design by using Root-

Locus methods. "To achieve this, first we will examine several designs then try to put the

ceneral ideas in a set of rules.

Simulation studies employed Dynamic Simulation Language (DSf-L and [wald

package in the I I .\l 3033,4381 main frame.



11. PRELIMIINARY EXAMIPLES

A. HIGH GAIN MIOTOR ANIPLIDYNE SYSTEMI
To study the ideas for feedback compensation first we choose an industrial designi

that ce-ists and is available For comparison. F igure I showxs the vx hole compenqated

sstcem, where

Figure I. Origim'k Complensated S~ stem

K, = 14, 8(I

G() s(s + 5 7.90)(s + 0.l12Tj9.3 2)()

0). 137 3 (.7 + 02.5)(s ± 71.605)(3
is)=(.s 4- 1)(s + 5.26)(s + 625)

Figure 2 shows the open loop Bode plot for the uncompensated system.i The uin-

compensated system is badly unstable.

2
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We may use two different kinds of block diagram manipulation to analyze tisls

temn. First is the ordinarv manipulation shown at Figure 3, where

R -+ K1 Geq

Figure 3. Ordiniary Manipulation

K, = 14.8

Gcq =6096553.14(s 4- 1)(is + 5.26)(.5 + 625)(5
s(s + U.003Tj(.66)(s ± 59.3 5)(s + 79.2)(s + 275.45Tj845.8)

Analysis of this transtler Function provides the open loop Bode plot, Root-Locuts.

magnified Root-Locus and time response of' the system which are gi1ven by Figures 4 -

7. Since there is no pole in the right hialf'plane. wve canl get phase margin and gain margin

from theso plot-,.

4
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The second type of manipulation is done to get more information using the Root-

Locus method. The first step for this is shown at Figure S. Then with the arpropriate

block diagram reduction the system becomes as in Figure 9, where

Figure S. Fir st Step For Manipulation

Figure 9. Final Sy stemn For Root-Locus Examination

G()=(s±+ 579.9 7)(s± +61905 26.9STj45.19)(6



O.00926s3(s + 62.16)(s + 71.92)
(s + I)(s + 5.24)(s + 625.33)

By using the loop transfer function 6I i(s) to draw the Root-Locus we may examine

the system for root movcments. Since the G(s) has two poles in the right half plane. the

Bode plot cannot be interpreted from thc point of view of gain margin or phase margin,

but it shows the stability of the system.

The root locus for the uncompensated system is shown at Figure 10.

From this point we can proceed to explore the design procedure of the designer.
F-irst of all, since this design was done using Bode design methods, it will be hclpful to

get the GI and 1:I1 magnitude curve which is shown at Figure 11 for the original systcm

at Figure 1.

As we may see from the block diagram there are zeros at the origin. For this system

we need at least two zeros to kccp the system type number unchanged. Also the spec-

ifications show that we want to have a very high error coefficient for steady state accu-

racy and a very narrow bandwidth. Because of these characteristics, there is a dipole near

the origin. It is possible to see this on the Bode plot of Figure 11.

The designer could have put the third zero very close to origin but in that case

building the system might difficult.

Since other poles are far away compared with these zeros and dipole, these compo-

ncnts will decide the system behaviour.

The Bode plot, Root-Locus and magnified Root-Locus around the origin for the

loop transfer function GIl(s) are giv en by Figures 12 - 14. Since we have roots in the

right half plane, the Bode plot cannot be interpreted for phase and gain margin values.

As a result of this problem we may say that for high error coetlicient and narrow

bandwidth svstcms we may need zeros at the origin and a dipole very close to the origin.

10
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B. POSITION CONTROL SYSTEM

As a second example we chose a position control system having an amplidytc and

a DC armature controlled motor as its power element. Figure 15 shows the oiginal

compensated system, where

Figure 15. Original Compensated Systeni

K, =- 0.233 (8)

A,, = 0.061 (Q)

S12000 00
S0.0 + I (10)

1.88s(QA.402s + 1) (II)

G3 = 0.333s (12)

G, = 0.0046s 2  (13)

2
G5 = s (14)

s 2 + 6.5s + 10

16



Figure 16 shows the open loop Bode plot for the uncompensatcd system. The un-

compcnsated system is badly unstrible.

U) C

I C

/
/ I

*/ 2

6 4

!C

/-

/I
I '

I ,
r- . .

Figure 16. Uncomnpensated S)stem Open Loop Bode Plot
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Again we miay Use two different kinds of block diagramn manipulation to analyze thkl

svstern.

First is the ordinary manipulation shown at Figure 17, where

Figure 17. Ordinary Mianipulation

K, 0.233

Geq =o~uu9i + 11000(s 2 + 6.5s ± 10) 2(
Grq- 0009S +3.02S55s' + 247.1445s 3+ 14.45s 2+ 18.8s 1,

Analy sis of' this transfier function provides the open loop Bode plot, Root-Locus.

magnified Root-Locus, and time response of the system which are given by Figures IS

- 21

Since there is no root in the righlt half plane, we can get phase and gain margins from

this plot.
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The second type of manipulation is done to get more inibrmation using the Root-

Locus method. The first stcp for this is shown at Figure 22.

Figure 22. First Step For Manipulation

Then with the appropriate block diagram reduction the s~ stem becomes as in

Figure 23, where

Figure 23. Fitial System For Root-Locus Examination

23



G 473,9.3
(s - 26.72-Tj66.9)(s + 9 1, 74)

0.0012s 3(s+ 72.39) (18)
(s + 2.5)(s + 4)

By using the loop transfer function Gil(s) to draw the Root-Locus we may examine

tile system for root movements, Since G(s) has two roots in the right half plane, the

Bode plot of this cascade combination cannot be interpreted from the point of view of

gain margin or phase margin, but it shows the stability of the system.

The root locus for the uncompensated system is shown in Figure 24. From this

point we can proceed to explore the design procedure of the designer.

First of all, since this design was done using Bode design methods, it will be helpfl

to get the G and 1I11 magnitude curve which are shown in Figure 25 for the original

systemn in Figure 15.

As we may see from the block diagram there are three zeros at tile origin. As in the

first example we have to have at least one zero at the origin to keep the system type

number unchanged. Also since we want to keep the error coefficient unchanged we have

to have one additional zero at the origin. The reason for the third zero is to provide a

dipole near the origin to make the system have a ve y high error coefficient for steady

state accuracy and a very narrow bandwidth.

For the GII(s). the Root-Locus and a close look around the origin to the Root-

Locus are given in Figures 26 and 27.

Now we may want to see the effect of removing some of the components from tile

compensator. First, if we remove the third zero the Root-Locus becomes as in

Figure 28. -lhe system is unstable. Now we may want to bend the loci by moving one

of the poles close to the origin toward left. If we start to move the pole which belongs

to the dipole at s = -2.5; Figure 29 shows the condition when this pole is at s = -50.

Tlhe system is still unstable. By putting this pole further from the zero at s = -72.39.

we can bend the loci toward the left half plane. We may interpret this as follows : when

we move the pole to the left we increase the sum of the poles and therefore the sum of

the roots. This affects the Root-Loci by moving the asymptote centroid to left, so the

loci from tile right half plane cross into the left half plane. Figure 30 shows the Root-

Loci for this condition. Now we may want to exanine the specifications of the system

24



and compare them with our specifications. Since the doninant roots are far away from

the origin the accuracy and damping will decrease, and the bandwidth of the system will

increase. These do not agree with our specifications.

After all these trials and sample designs we may summarize the results as a set of

rules for design of feedback compensation

1. To keep the system type number unchanged put at least the same number of zeros
at the origin as the original system's type number.

2. To keep both the system type number and the error coellicient same unchanged.
the number of zeros at the origin should be N + 1, where N is the type number
of the uncompensated system.

3. To have high error coefficient and narrow bandwidth for steady state accuracy in-
clude a dipole close to the origin. Put the zero of the dipole at the origin for ease
in physical realization.

In the next chapter we will apply these rules to several different kinds of problems

and see whether they work or not.

25
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111. DESIGNING COMPENSATORS

A. NON-NIINIMUNI PHASE SYSTEMS
Before studying systerns that have all poles and zeros in the left half plane, we may

want to examine non-mininmun phase systems. If we have a root or roots in the right

half plane we are not able to use Bode methods for designing compensators, therefore

the Root-Locus method will be the only useful tool.

To illustrate we chose the following transfer function, which is the roll mode of a

vertical take-off aircraft. i-igure 31 shows the original system, where

R + G(S)C

Figure 31. Original System

77.187(s + 0.225 +jO.6607)
G(s) = (s - 0.0434)(s + 1.464)(s + 0.21 +jO.844)(s + 48.35 +j49.34) (19)

As we may see from the transfer function, there is a real pole in the right half plane.

For this reason we can not use Bode methods to compensate the system. The open loop

Bode plot, Root-Locus and magnified Root-Locus for this system are given by Figures

32 - 34.

To find the closed loop roots we make the block diagram manipulations. Then the

closed loop transfer function becomes :

7 7.18 7(s + 0.225 4jO.6607)
G1(s) = (s - 0.036)(s + 0.21 +jO.84)(s + 1.474)(s + 48.34 +j4S.72) (20)
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From this point on we may start to think in terms of Root-Locus and loop transfer

functions.

Since we will want to have loci from the pole in the right half plane toward the left.

we have to put either a zero or a pole to the lcft of this pole. Putting a zero at the origin

will not help us, because in that case we always will have a root in the right half plane.

So we should put the compensator poles and zeros somewhere in the left half plane.

Choosing the specific zero and pole locations is an engineering decision and mostly de-

pends on the specifications. With this problem we will try to illustrate three diferent

combinations.

First put a zero close to the origin and a pole far away, both in the left half plane.

In this case the loop transfer function becomes as in Figure 35, where

R ~G G(S) ] C ._

H1 (S)

Figure 35. Loop Transfer Function Form

77.187(s + 0.225 TjO.6607)
G1(s) - O.036)(s + 0.21 Wj0.84)(s + 1.474)(s + 48.34 -Tj4S.72) (21)

K1(s + )
111(s) - (s + 50) (22)

The Root-Locus and magnified Root-Locus for the loop transfer function are given

in Figures 36 and 37. As we may see from the plots there is a root-locus segment be-

tween the pole in the right half plane and the zero at -1.

To find the value for K, we should get the tabulated points for the Root-Locus and

see for which gain all of the roots are in the left half plane. For this particular filter the

minimum value for K, was 203.7. We selected K, = 500 arbitrarily. For this value, our

system becomes as in Figure 38, where

37



- -

C;.,
9

9m

-ase*% 9

a •

""S -

a U

* S•

-0. -O, -0. 0. -. I. . O

REAL AXIS

Figure 36. Root-Locus For Loop Transfer Function

38



8a

a ,K

8

-2.00-.7n -1.m -t.25 -i.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 O.75 3im

REAL AXIS

Figure 37. Magnified Root-Locus For Loop Transfer Function

39



G(s) = J034( 77.187(s + 0.225 -TjO.6607) (3
(- 44)(I .464)(s + 0.21 :Fj0.814J(s + 48.35 TFj9.34) (3

111(s) -500l(s± 1) k24)
(s+±50)

H1i(S)

Figure 38. Compensated System

If we make the block diagram manipulation, wve get the slystemi shown in

Fig2Ure 39, where

Figutre 39. Resulting Equiialent G

77.187(s + 0.225TjO.6617)(s + 50) (25)

cq~J-(s + 0.0269)(s + 0.235TjtJ.842)(s + 1 .535)(s + 49.67)(s ±48.41 TJ'48.63)

The Root-Locus, magnificd Root-Locus, open ioop Bode plot and time response for

the compensated system are given in Figures 40 - 43. As we may see from the Bode plot

the system is stable but wve do niot have enough gain.
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We may handle this by putting another gain block outside the minor loop. The final

svstem then becomes as in FLure 44.

Figure 44s. Finial Compensated System

K may be selected according to the specifications. We chose K l()(- For illuq-

tra tionl.

G~~s) ~77 .1 7(s + 0.225 TFjo.6607)26(s) - (-.0434)(.s + +A4~ 0.21 TjO.S44)(s ± 4S.35 Tj49.34) (6

s)=500f(s + 1) (27)
(S + 50)

The open loop Bode plot and time response for this particular values are given in

FIL'ures 45 and 46. We may change the loop gain according to the specifications. FLlk'cts

of' changing the loop gain will be shown f'or the third combination.
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The second type of configuration puts two complex zeros close to the origin and two
poles far away, all in the left half plane. In this case the loop transfer Function becomes

as in Figure 47, where

Figure 47. Loop Transfer Function Forin

GI~~s) 77.187(s + 0.225 TjO.6607) (8
G()=(s - 0.036)(s + (0.21 TjO.84)(s + 1.474J(s + 48.34 T-j4S.72) (8

112() = K2(s±+I Tj) (9
11() (s + 20)(s + 30) (9

Tlhe Root-Locus and magnified Root-Locus for the loop transfer Function are giVcn
in Figures 48 and 49. As wve can see from the plots wve moved the loci toward the left

half plane.
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To find a value for K, , we should get the tabulated points for the Root-Locus and

see flor which gain all of the roots are in the left lhalf plane. For this particular filter the
mmimflnz value for K, was 2-125.8. We selected K2= 2500 arbitrarily. For this valuc, our
system becomes as in Figure 50, where

G~~s) 77.187(s + 0.225 TFjo.6607) (0
G~)=(s - 0.04134)(s + 1.464l)(s + 0.21 T j C.844)(s + 4S.35 Tj;49.34) (0

2500(s ± I TA)
112 (S) =(s + 20)(s + 30) (1

H2(S)

Figure 50. Compensated System

If wve make the block diag~ram manipulation, we get the sy stem shown in

Figure 51, where

Figure 51. Resulting Equivalent G

Geq(S) ~ 77.187(s + 0.225 TjO.6617)(s + 20)(s + 30) (2
eq(s + 0.007)(s + 0.22Tj0.84)(s + 1.427)(s + 24.5Tj6.3)(s + 4S.87Tj4S.3)
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The Root-Locus, magnified Root-Locus, open loop Bode plot and time response for

the compensated system are given in Figures 52 - 55. As we may see from the Bode plot

the system is stable but the gain is too low.
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]Figure 52. Root-Locus For Final System
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We may handle this by putting another gain block outside the minor loop. The final

system then becomes as in Figure 56.

- [" ! H2(S)]

Figure 56. Final Compensated System

K may be selected according to the specifications. We chose K = 100 for illus-

tration.

G(s) 77.187(s + 0.225 TjO.6607)
(s - 0.0434)(s + 1.464)(s + 0.21 TjO.844)(s + 48.35 Tj49.34)

2500(s + I Tj)
lt 2(s) = (s + 20)(s + 30) (34)

The open loop Bode plot and time response for these particular values are given in

Figures 57 and 58. We may change the loop gain according to the specifications. Efkcts

of changing the loop gain will be shown with the next combination.

The third type of combination puts two complex zeros and one real pole close to the

origin and one pole far away, all in the left half plane. In this case the loop transfer

function becomes as in Figure 59, where

56



I p , I |I I

* '0

/

* [U
/ a

, I,
/ /1

/
/ U

Figure 57. Bode Plot For Finial System Loop Gaini = 100

57



N

-4

.ey"

D

ID

Figure 58. Final System Loop Gain = 100

58



R + G1I(S) ] C ..

H3(S)]

Figure 59. Loop Transfer Function Form

GIs) =77.1S7(s + 0.225 Tj.6607)

(s - 0-0-S6)(s + 0.21 T-j).84)(s + 1.474)(s + 4S.34 T-j48.72)

- A '3 s + 2 T J O .5) ( 1 1

S(s + i)(s + 50)

The Root-Locus and magnified Root-Locus for the loop transfer function are giveI

in figures 60 and 61. As we may see from the plots the locus is moved toward the lek

half plane.
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To find a value for A;, wve should get the tabulated points for the Root-Locus and

see [or which gain all of the roots are in the left hialf plane. For this particular filter the

niinijnum value for K, was 81.6. We selected K, = 250 arbitrarily. By this, our s% stem

becomes as in Figure 62, where

H3(S)P

Figure 62. Compensated System

G(s) - 7 7.187(s + 0.225 TjO.6607) (7
(s - 0.0.434)(s + 1.46-4J(s + 0.21 -Tjo.844)(s + 48.35 Tj9.34) (7

113(S) = 250(.(s+ 2 T0.50) (38)
(s + 1)(s + 50)

If we make the block diagram manipulatiuln, we get the system) shown inl

Figure 63, where

Gcq(S) ± .9(s77.187(.T + 0.225 TjOi.6617)(s + 1)(s + 50) (39)
(+0.9)( s±4 0.236 Tj(..87)(s + 1.52)(s + 49.84)(s + 48.37 Tj48.6) -
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R
Geq (S) -

Figure 63. Resulting Equivalent G

lhe open loop Bode plot and time response for the compensated system are given

in Figures 64 and 65. As wve can see from the Bode plot the systcm is stable but the gain

is too low.
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We miay handle this by putting another gain block outside the in~or loop. The filial

system then becomes as in Figure 66.

Figure 66. Finial Compensated System

K may selected according to the specifications. We chose diflerent values for IllUS-

tin U on.

G~s) 77.187(s + 0.225 TjO.6607)
(()s - 0.0434)(s + 1.464)(s + 0.21 TjO.844J(s ± 48.35 Tj49.34)

11() 250(! + 2 T 0.5i) (1
(s + 1)(s + 50)

The open loop Bode plot and time response for K =100 are given in Figures 67 and

68.
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We can change the loop gain according to the specifications. Figures 69 and 70 show

the time responses for this system when this gain is 500 and 1000. As we mar see fiom

the time response we can change the amount of overshoot by changing this gain.

As a result of this problem we can sununarize the steps for designing feedback

compensators for non-minimum phase sy stems as following

I. rind the closed loop transfer function and get the Root-Locus for this.

2. Pick the filter poles and zeros according to the Root-Locus rules.

3. Get the Root-Locus for the loop transfer function. Tabulate the gain values, and
select the gain that puts all the roots to the left half plane.

4. Rearrange the system. Look For the Bode plot and time response. If they are ac-
ceptable, leave it that way otherwise select another gain outside the miinor loop.
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B. FLEXIBLE ROCKET CONTROL SYSTEM

As a second example we chose the control system of a flexible rocket which is shown

in Figure 71. IThis example was extracted from Ref. 1.

Structure Structure and
Demod. Filter Servo Rigid Body

R 15 0 Gd Gsf :Eti+ 0.3Gr

Figure 71. Original Uncompensated System

GQ(s) is the transfer function for the rigid body and is defined as

7.21
GR(s) = (s + 1.6)(s- 1,4s) (42)

G)333
(s + 333)

G,(s) = 2 (254)

s + 42.2s + 2750

G~~(s =(s
2 + 70s + 4(,0)(s2 + 22s ±+ 12O)

(s 2 + 30s + 5810)(s 2 + 30s + 12800)

And the structure is defined as ;

T 0.686(s + 53)(s - 53)(s2 - 152.2s + 14500)(s 2 + 153.Ss + 145 (40)

(s) + s + 605)(s 2 + 45.5s + 266())(s 2 + 2.5 Is + 3900)(s 2 + 3.99s + 2298())
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After perforiming all calculations the total System becomes as in [igure 72. Sinice

the ordcr of'the numerator and denominator are quilte large. the transf'er Function IS split

into three parts to fit onl the page.

GoC

Figure 72. Combined Uincompensated Sistem

G,(s) = G., x 6', x 6., where

GOI - 39134576,25(s 4- 35 TJ/52.7)(s 4- 11 Tjl 12.6)
(s+017.)(s+1 .J 1.1)(s + 333)(s + 21.1 Tj4S)

(s - 2 1.55 TJ j1.79)(s + -/2.76 J!00.24)(.s - 83.1 T/J61.82) (8
I s + 2 2. 75 TJ4 0.2 9) )s + 1. 2 55 T,/6()2. 44) (s + 1. 9 9154 5Ul.5 7)(s - 1.4 S)

(s + 11.6 T j 14.02)

S (s + I .6 )(s + 0. 5 T j24.6) 4

As we may see fr-om the transfer function we have Four zeros and a real pole in tlhe

right hall' plane. In addition to this most of the poles and zeros which are Ii the left hialf'

plane arc very close to the Imaefflary axis.

I hie Root- Locus for the open loop uncompensated system is given by 1-igure 73.

-1lihe S% Stem is unstable. Since there is a real pole in the right half'pkine we can not easily

interpret the Blode plot For this sy"steml.

-1 hie next Stepl is to Ifinld the loop transfer function as in previous examples. By per-

VOrnmin tile recular block diagram manlipulation the closed loop transfIer f1U, tlon be-

conlie,, ( S) (Is X G0(s) X G(s) wt"icl is
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39134576.25(s + 35 T i52.7)(s + 11 T.j 12. 6 )(s + 11.6 T j24)
(s + 333)(s + 1.9 TjlSI.5)(s + 15 T-jl 12.2)(s + 13.8 TJ74.5)

(s + 72.8 Tjl00.2)(s- 83 Tj61.8)(s- 21.6 Tj2 1.8)
G(s) = (s + 1.5 T-j6O.4)(s + 19.9 Tj52.6)(s + I T-j24)(s - 0.5 T-j4.5)

Gc3(s) = (s + 21.8 T-j44.17) (52)

From this point on we may start to think in terms of Root-Locus design. As we saw

from the loop transfir function we have a pair of complex poles and four zeros in the

right half plane. In addition to this most of the poles in the left half plane are very close

to imaginary axis and there are four zeros in the right half plane. So probably some of

the roots are going to end up at these zeros. This will give us a gain constraint.

Since we have poles close to the origin and imaginary axis in the left half plane,

putting a zero or zeros at the origin would not help us, because in this case we always

will have roots in the right half plane. So we decided to use a general txpC of

compensator which is two zeros close to the origin and two poles far away. The purpose

of the zeros was to have loci from the poles in the right half plane terminate on these

zeros. We made several trials with this type configuration but none of them worked.

An illustration of this is shown in Figure 74, where G,(s) is the closed loop transler

function and

R + C

Figure 74. Illustration of General Configuration

- 1(s) = 98. 6 (s + 0.46 Tj4.482)

(s + 100)(s + 200)
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The Root-Locus for this case is given in Figure 75.
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Figure 75. Root-Locus for Gener al '1) pe Compensated Sy stem
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As we may see the system is unstable, because roots in the lcft half plane were

moving faster than the roots in the right half plane.

With this type of problem, since the system has a 12" order numerator and 17" order

denominator, designing the compensator by just examining the system would be impos-

sible or require many trials. So we decided to use the function minimization subroutine

in the DSL package in the mainframe. The parameters used in the subroutine and the

function minimization program are given in Appendix A and B.

As the result of the program we found that we have to put the poles of the

compensator close to the origin and to the left of the zeros which belong to the

compensator. BI putting these zeros and poles in this combination, we make the roots

in the right half plane move faster. Figure 76 shows the block diagram for the compen-

sated system. where G,(s) is the closed loop transfer function and

Figure 76. First Resulting Compensator of Function Minimization

14.72(s + 0.875 Tj2.058) 5
lt2(s) = (s + 2 Tj8.343)

The Root-Locus for this compensation is given in Figure 77. By getting the tabu-

lated root locations, we see that for a Root-Locus gain of 0.068 we get all roots in the

left half plane. Then our final compensator becomes ;

112(S) - 2+ 1.75s+5 (5 )
s 2+4s +73.6
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The timie response for this case is given in Figure 78. As we may see thc system is

stable but the settling timie is a little lone. According to the specs we may want a f',Ister

system than this.
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Figure 78. Time Response for First FMI Result
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Running the Function Minimization program but changing C and w, to get an out-

put with the desired settling time, we got the coefficients for this compensator as shown

in Figure 79. G,(s) is the closed loop transfer function and

R + C

Figure 79. Second compensator Resulting from Function rlinirnization.

.I8.Il(s + 1.1531)(s + 4.878) (56)It3(s) = (s + 3.672 Tj5.67)

The Root-Locus for this is given in Figure 80. Again by getting tabulated root lo-

cations we see that for a Root-Locus gain = 0.124 we get all roots in the left half plane.

"lhen our final compensator becomes

113(S)= S 2 + 6.031 Is + 5.625 7
s + 7.344s + 45.632

The time response for this case is shown in Figure 81. As we see the settling time

and amount of overshoot are within specific limits.
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Then our total compensated system becomes as in Figure 82, where G(s) is the Open

loop transf'er function and

Figure 82. Block Diagram of 'otal Compensated System

(s + 1.1531)(s + 4.878)
lt 3(s) = (S + 3.672 Tj5.67)

As a result of this problem we may gcncralize that, if we have components close to

the imaginary axis in both left and right half plane, we have to use pole-zero couples

close to each other as a compensator. In the next chapter building filters by using pole

placement and state feedback methods will be discussed.
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IV. DESIGNING FEEDBACK COMPENSATORS USING POLE

PLACEMENT

To compensate the systems by state feedback, we may use several computer pro-

grains to find the feedback coefficients. Sometimes observing or feeding back some of

the states may not be possible. For such cases we might have to build an estimator to

estimate the states.

The purpose of this chapter is to investigate whether it is possible to build a filter

by using these feedback coefficients as zeros and adding extra poles to the feedback

path.

To illustrate this we chose the following plants.

A. ALL COMPONENTS ARE IN TIlE LEFT HALF PLANE

For this case the open loop transfer function of the plant is

I100()G(s) =-00 (59)s(s + l)(s + 2)(s + 10)

We want to design a feedback compensator (a filter) to stabiliLe this system after

deternining the state feedba ck coefficients. Since the uncompensated system is fourth

orc . in order to have full state feedback we have to name four roots.

In this thesis we used the SVS (State Variable Systems) [Ref. 2J program.

Io use the computer program we have to determine n-I roots (where n is the system

order) and find the fourth root from the characteristic equation to enter the program.

Our desired roots are

S1,2 = -1 Tj2, s3 = -4 (60)

Then 1-I(s) becomes

I(s) =s 3 +6s 2 + 13s+ 20 (61)

If we get the Gil(s) to find the characteristic equation

GIl(s) = lO00(s 3 + 6s2 + 13s + 20) (62)
s + 13s ±32s 2+20s
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The characteristic equation then becomes

s 4 4 1013s 3 +6032s 2 + 13020s + 200 00 (63)

And the roots of the characteristic equation are ;

S, = -3.988, s 2,3 = -0.997 Tjl.996, s4  -1007.02 (64)

The root locations obtained with this design are within 0.3 /o of the desired values

and the 4", root is at -1007.02.

Now we may go to the SVS program to find the state feedback coefficients which

would place the roots exactly at -4, - I Tj2, -1007.02. The state feedback coelflcients

we go: rom SVS are ;

li(s) = 0.9998s 3 + 5.982s 2 + 12.9 Is + 19.8 (65)

These coefficients are negligibly diflerent from the ones we obtained by multiplying

the des'red roots. For accuracy we used the coefficients that we got from SVS.
Ior all practical purposes we may accept the A3 which is coefficient ofs 3, as 1. Our

state feedback compensated system then becomes as in Figure 83, where G(s) is the

open loop transfer function and

I I H(s)

Figure 83. State Feedback Compensated Sy stem.

l(s) = s 3 + 5.982s2 + 12.9 Is + 19.8 (66)

il(s) in factored form is

It(s) = (s + 0.996 T-jI.993)(s + 3.997) (67)

Root-Loci for the loop transfer function Gl(s) are given in Figure 84.
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To preserve the unity feedback we use block diagram manipulation and the system

then becomes as in Figure 85.

Figure 85. The For of The System With Unity Feedback.

In Figure 85, G(s) is the open loop transfer function and

111(s) = s(s + 2.99 T 1.993) (68)

To convert the f'edback compensator to make it more realizable as a filter, we ha -e

to choose the locations of the extra poles quite far away so they can not allect the

transient behaviour of the system. If we put the extra poles into the system form shown

in Figure 83 we get the required gain easily. The new system then becomes as in

Figure 86, Where G(s) is the open loop transfer function and

112(S) K(s + 3.99)(s + 0.996 Tjl .993) (69)
(s + 300)(s + 400)(s + 500)
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Figure 86. System With Extra Poles.

To find the value of the K we get the tabulated root locations ofthe Root-Locus lor

the loop transfer function GI!2(s),wliich is shown in Figure 87.
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Rtoot-locus gain K to bring the roots where we want them was K-- 1.905459 x 10"

By using the same manipulation as in Figure 85 if we redraw the block diagram of the

system to preserve the unity feedback we get the final compensated system shown in

Figure 88.

1

Figure 88. Final Compensated System

G(s) is the open loop transfer function and

G(s) = 19.8 x 1.9(.5459 x 107
(s + 300)(s + 400)(s + 500) (70)

1.905459 x 107s(s + 2.99 +J11.99)
lts) = (s + 300)(s + 400)(s + 500)

'I he time responses for only state feedback and for the filter compensated case are

Figures 89 and 90. As we may see from the transient responses since all roots are very

close to the desired places the time responses are almost exactly same. The only disad-

vantage of this configuration may be to build two identical sets of poles to use in dif-

ferent places.

B. NON-MINIMUM PHASE SYSTEMS

As a second example we chose a non-minimum phase system to check if the idea

works for both cases.

For this case the open loop transfer function of the plant is

G(s) - W(72)
s(s - l)(s + 2)(s + 20)
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We want to design a feedback compensator (as a filter) to stabilize this system after

determining the state feedback coefficients. Since the uncompensated system is Fourth

order, in order to have full state feedback we have to name four roots.

To use the computer program we have to deternine n-I roots (where n is the system

order) and find the fourth root from the characteristic equation to enter the program.

Our desired roots are;

S1, 2 = -1 Tjl, s3 = -3 (73)

Then 1l(s) becomes

Ii(s) = s 3 + 5s 2 +8s+6 (74)

If we get the GI(s) to find the characteristic equation

1000(s + 5s2 + 8s + 6)
s 4 ± 21s + 18s 2 

- 40s

The characteristic equation then becomes

s + 1021s 3 + 50Ss 2 + 7960s + 6000 (76)

And the roots of the characteristic equation are

S, = -2.967, s2 ,3 = -0.98S TjI.0l. s4 = -1016 (77)

I he root locations obtained with this design are within 1.1 % of the desired values

and the 4'" root is at -1016.

Now we may go to the SVS program to find the state feedback coeflicients which

would place the roots exactly at -1 Tjl, - 3, -1016.

'he state feedback coeflicients we got from SVS are

11(5) = 0.9999s3 + 4.995s2 + 7.952s + 5.956 (78)

These coeflicients again are negligibly different from the I I(s) we first accepted but

we used the ones we found from SVS.

F-or all practical purposes we may accept the k3 which is coellicient of s3 as 1. Our

state feedback compensated system then becomes as in Figure 91.
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Figure 9 1. State Feedback to Compensate Tie System

G(s) is the open loop transfer function and

It(s) = s3 + 4.995s2 + 7.952s + 5.956 (79)

1 I(s) in factored form is

lI(s) = (s + 0.995 -TjO.998)(s + 2.998) (8()

Ihe Root-Locus for the loop transfer function Gil(s) is given in Figure 92.
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To preserve unity feedback we may use block diagram manipulation. 1 he next form

of the system then becomes as in Figure 93 where G(s) is the open loop transfer func-

tion and

lt(s) = s(s + 2.494 T- 1.316) (SI)

H I(s)

Figure 93. The Form of The System With Unity Feedback.

To convert the feedback compensator to make it more realizable as a filter, we have

to choose the locations of the extra poles quite far away so they can nrt iffect the

transient behaviour of the system. If we put the extra poles into the system form shown

in Figure 91 we get the required gain easily. The new system then becomes as in

Figure 94.

I I

H2(s) -

Figure 94. System With Extra Poles
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G(s) is the open loop transfer function and

112(s K(.5 + 2.998S)(s + 0.995 T1Q0998) (S2)
(s + 3f)s+ '400)(s + 500()

-1Io find the valuc of the K we get the tabulated root locations of the Root-Locus for

the loop transftr fuinctioni G11(s),which is shown in Figure 95.
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The Root-locus gain K to bring the roots where we want them was

K= 1.1257119 x 10". By using the same manipulation as in Figure 93 if we redraw the

block diagram of the system to preserve the unity feedback we get the final compensated

system shown in Figure 96.

Figure 96. Final Compensated System

6(s) is the open loop transfer function and

5.956 x 1.1257119 x 108(s + 300 )(s + 400)(s + 5u)(S3)

1.1257119 x 1(7s(s + 2.494 -.jl.316)
lt 3(s) = (s + 300)(s + 400)(s + 500)

The time responses for state feedback and for the filter compensated case are gixen

Figures 97 and 98. As we may see from the transient responses since all roots are very

close to the desired places the time responses are almost exactly same. The only disad-

vantace of this configuration may be to build two identical sets of poles to use in dif-

ferent places.

C. EXTENDING THE IDEA TO CASCADE COMPENSATION

The procedure for root placement with the feedback filter used only the loop transfer

function. We may compensate the system with the same components and same gain by

using cascade compensation. If we investigate the systems, the characteristic equations

are the same with the filter in either the feedback path or in the forward path. Except

this time instead of the poles, the zeros of the filter are the zeros of the closed loop
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transfer function but the roots of the closed loop transfer function are in the same places

as with the feedback compensation scheme.

To show the result of this idea we chose the same plants. For the first one if we put

the same filter in the forward path the system becomes as in Figurc 99, where

H I(s) G(S) C

Figure 99. Cascade Compensated System

G(s) = (85)
s(s + l)(s + 2)(s + 10)

1.905459 x 101(s + I Tj2)(s + 4)
(s + 300)(s + 400)(s + 500)

The time response for this system is given in Figure 100. As we may see the time

responses and oscillatory frequencies are almost identical with the feedback compen-

sation time response which is shown in Figure 90. In this configuration because of the

derivatives due to the cascade zeros we have faster rise time.

We checked the roots of the systems for both the feedback and the cascade config-

uration. They were identical within 0.37 % difference.
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The second plant becomes as in Figure 101 if we put the compensator in tile for-

ward path, where

" R -1 H2(s) 
6s

Figure 101. Cascade Compensated Second System

G(s) = 1000
s(s - l)(s + 2)(s + 20) (87)

1.1257119 x 107(s + I Tj)(s + 3) (88)
lt 2(s) = (s +300)(s + 400)(s + 500)

The time response for this case is given in Figure 102. Again as we may see the time

response is essentially the same as that of the feedback configuration which is shown in

Figure 98. 1 lere again we have a faster rise time because of derivatives in the cascade

filter.

As we may see fron the Figures 99 and 100 we put the filter before the plant in both

cases and we used the DSL (Dynamic Simulation Language) which behaves the same

way with the hardware.

Then we decided to simulate the systems with ALCON (Simulation program for

personal computers). This program uses arithmethic polynomial calculations to calculate

the step responses for the systems.

104



C; C

a,

U

Figure 102. Time Response For Cascade Compensator (Second example)

105



The resulting time responses from this program for both problems are given in 7ig-

ures 103 and I4. As we see high firequency ripples exist fbr a short time period which

we didn't see in the DSL simulation.

To investigate the reason For this difference we interchanged the blocks in Figures

99 and 100, that is, we ted tile error signal into the G block and tie output from the G

block into the 11 block. For this combination resulting step responses are given in Fig-

ures 105 and 106 which are identical with the time responses we obtained from ALCON.

For these DSL simulation cases, in the first case the filter is before plant, the plant

works as Low-Pass filter and the high frequency ripples are not present, but in the sec-

ond case the filter follows plant, and the ripples appear in the output.

We could not decide which one of the simulations is true. According to linear the-

ory, changing the places of the plants should not affect to the behaviour of the svstenl.

To investigate the reason for this differcnce is left as a recommendation.

As a result of these examples we may generalize the design steps as follows

1. Select N - 1 desired roots.

2. Multiply them and find the 11(s).

3. Find GIt(s) and get the characteristic equation.

4. Find the roots of the characteristic equation. If they are acceptably close to the
desired roots, use 1l(s) as a state feedback directly, otherwise go to SVS or another
computer program to find the state fedback coefficients to put the roots exactly
at the desired places.

5. Choose the extra poles as far away as possible and put them in the denominator
of li(s).

6. Draw the Root-Locus for the loop transfer function GIl(s) (including tile extra
poles) and get the tabulated data.

7. Select the appropriate gain to have the system roots in the desired places (generally
this will be very high gain).

8. If' the purpose is to design a cascade filter, put the resulting filter directly in tile
fbrward path. Otherwise perform the block diagram manipulation as shown in the
examples and preserve the unity feedback.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In this thesis, the development of a procedure to design the feedback compensators

by using Root-Locus methods and pole placement methods has been presented. SiMu-

lation results and worked out examples have shown that except for extremely high order

systems designing the compensators with the Root-Locus method can be used for any

plant. The most important result is to design them using pole placement concepts and

to be able to use them either in cascade or in the forward path.

Simulation results have also shown that the compensator cal be deternined by a

Function NI ininiization subroutine directly from the transfer function of an ideal plant

based on gi en specifications.

B. RECOMMENDATIONS

1. Further research should investicate methods to satisfy certain specifications '% ile
designing compensators with the Root-Locus mcthod.

2. In this thesis, it has been shown that Function NIinirnization can be used to dcicn
compensators. but the uzer should write his own program according to the parani-
eters. A package program may be written For the main frame to make the procedure
interactive and caster.

3. Further research may investigate the effect of gain variations on the root locations
while uing a pole placement method so one can use directly multiplication of de-
sired roots as II(s).
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APPENDIX A. CONSTRAINT PARAMETERS OF FUNCTION

MINIMIZATION

Subroutine HOOKE uses the Hlooke and Jeeves "direct search" method to find tile

local maximum or minimum of a multi-parameter criterion function, C17. [Ref. 3I.

lhe algorithm evaluates CF at a base point, X = (X(I), ..., '(:V)), then perturbs each

parameter in turn. by the amount + STEP(I), and evaluates CF at each new point,

If none of these points produces a better value of CF, then the stepsizes are de-

creased by a factor of BETA, and the process is repeated.

To use HIOOKE, the user must initialize the following arguments and. in the main

program, CALL I IOOK E(X,STEP,N.ITSIAX,CFI OL ,A LPI IA,BETA,CF,Q.QQ.

WI 1)RlN MIN.MIAX)

All of these arguments must be initialized in MAIN. except for X. CI-, Q, QQ. and

W. Recommended values for ALPI1A and BETA v-e ALPIhA = 2., BETA = 0.5. All

of the arrays, i.e.. X. STEP, Q. QQ and XV, must be declared and dimensioned in MIAIN.

1lhe arguments and their meanings may be explained as following.

X = The array of N parameter values. The user must supply the initial guesses, el-

ther in the DSL program or in MAIN.

SIEI) = An array of dimension N containing the initial step sizes to be used in the

search.

N = The number of parameters (a positive integer, at most 15).

I[MAX = 'Fhe maximum number of function calls to be performed.

CFTOL = Ihe error in the criterion Function to be reached bcfore the program

terminates ( difference between the current value and the previous stage value).

ALPIIA = The factor of (Y - X) which is added to Y to get XNLW; a number

greater than or equal to 1.

BETA = The stepsize reduction factor; a number between 0 and 1.

CF = The value of the criterion function.

Q, QQ, W = Arrays of dimension N, to be used as work space. They must be de-

clared and dimensioned in the main program.

IPRINT = An integer flag. 0 for no intermediate printout. I for intermediate

printout of X, CF, the number of function evaluation and notification of step-reduction.
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MINMAX An integer flag, -1 searches for a niinin . + 1 searches for maxi-
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APPENDIX B. COMPUTER PROGRAM FOR FUNCTION

MINIMIZATION

*This program finds the necessary parameters to fit the function to some
*special transient response. By changing zeta and omgn the standart time
*response may be generated.

D COMMON /HANDJ/FLAG,ERRFN,A1,A2,B1,B2
TITLE Rocket parameters
* FUNCTION MINIMIZATION
*Put initial conditions according to the previous assuming parameters.

INCON AlO=2.,A20=5.,BlO=. B20=lO0.
*Define your arrays to simulate your system

ARRAY P(1),Q(2),A(l),B(2),D(5),E(5),F(1),G(3),H(9),L(lI),K(2),...
M(2) ,Y(3) ,Z(3) ,S(2) ,T(4)

*Put the values for the array coefficients
TABLE A(1)=333.,B(1-2)=I.,333.,D(1-5)=I.,92.,18340.,984000.,...

51200000. ,E(I-5)=l.,60.,19510. ,558300. ,74368000.,...
F(1)=2750.,G(1-3)=l.,42.2,2750. ,H(1-9)=I. ,40.652,...
2949.22,1048754.7,1.86426E+08,3.9622E+09,1.17521E+11,...
2.12662E+12,1.10017E+14,L(I-ll)=l.,53.12,30506.757,...
1378867.,1.83946E+08,5.2509E+9,3.42441E+1,2.85168E+12,...
1.43994E+14,1.06498E+3,-3.42095E+14,K(1-2)=13.3,39.9,...
1(I-2)=I. ,30. ,P(i)=25. ,Q(1-2)=I. ,100. ,Y(1)=I. ,Z(1)=l. ,...
S(I-2)=I0.,50.,T(I-4)=I.,4.,8.,0.

PARAM R=1.
*Changing zeta and omgn changes the specifications of your system

CONST ZETA=O.40, OMGN=6.0,IC=0. 0
INITIAL
*This part of the program generates the standart time response

TOTERR=0.0
C1=SQRT(1.0-ZETA*ZETA)
C2=OMGN*ZETA
C3=OMGN*C1
PHI=ATAN(C1/ZETA)
ASSIGN INITIAL GUESS FOR FUNCTION MINIMIZATION

*This part gives the starting point to the program

IF (FLAG. GE.0.) GO TO 10
A1=A10
IF (FLAG.GE.O.) GO TO 10
A2=A20
IF (FLAG. GE. 0.) GO TO 10
Bl=BlO
IF (FLAG.GE.O.) GO TO 10
B2=B20

10 CONTINUE
*Put your variable coefficients here so program can change it

Y( 2)=A
Y(3)=A2
Z(2)=B1
Z(3)=B2

*Write normal simulation program for your system
DERIVATIVE
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XO=TRNFR(8,10,O. ,H,L,X2*2. 849)
X2=TRNFR(0,2,0. ,F,G,X3)
X3=TRNFR(4,4,0. ,D,E,X4)
X4=TRNFR(0,1,0. ,A,B,X6)
X6=l5. *ERG
ERG=ER -X9
X9=TRNFR(2,2,0. ,Y,Z,XO)
ER=R -XO

DYNAMICS
*Standart time response is generated by this formula

STD=l. 0-(EXP(-C2*TIME)/Cl)*SIN(C3*TIME+PHI)
ERR=XO-STD
ERRSQ=ERR"*ERR
TOTERR=INTGRL(0. ,ERRSQ)

*~As a cost function integral of error square is used
TERMINAL
*This part finishes the calculation when min value is reached.

ERREN = TOTERR
CONTRL, FINTIM=2. ,DELT=0. 01
END
STOP
FORTRAN
*From now on just declare your step values and amount of variables

MAIN PROGRAM FOR FUNCTION MINIMIZATION
IMPLICIT REAM*8 (A-H,O-Z)
DIMENSION X(4),STEP(4) Q(4),QQ(4),W(4)

C X(l)=K,X(2)=P INITIAL VALUES IN DSL ROUTINE
STEP(l)=0. 500
STEP(2)=5. ODO
STEP(3)=O. 500
STEP(4)=l0. 000
N=4
ITIIAX =100
CFTOL =1.00-6
ALPHA = 2. 000
BETA = 0. 5D0
IPRINT = 0

MINMAX = -1
CALL HOOKE(X,STEP,N,ITMIAX,CFTOL,ALPHA,BETA,

CF,Q,QQ,W,IPRINT,MINMAX)
STOP
END

115



LIST OF REFERENCES

1. H-an, Kuang-Wei, Model Reduction for Keeping Gain Margin and Phase Afalgin

Unchanged. IEEE Transactions on Industry Applications, Vol. IA-22, Number 1.
pp. 51 - 57, 1986.

2. Unlu, Ismail, State Variable S ystemts, MSEE Thesis, Naval Post-graduate School.

Monterey, CA, December, 1987.

3. I.B.M., Dynamic Simulation Language , Chapter 5, pp. 56 - 61, 1987.

116



INITIAL DISTRIBUTION LIST

No. Copies

I. D~efense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Posteraduate School
Monterev, CA 93943-5002

3. Chairman. Code 621
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor George J. Thaler. Code 621TrI
Naval 1Posteraduate School
Monterey, CA 93943-5000

5. Prol'essor I al A. Titus, Code 62TFsI
Naval Postgraduate School
Monterey. CA 939413-5000

6. Levent Korkniaz 2
Alidede Sok. 29,13
Asa~zi ANvranci
Ankara, T'URKEY

7. 1)eniz Ku~vvetlCri Komutanligi 3
Personel E2itim Daire Baskanligi
Bakanilikiar - Ankara, TURKEY

S. Deniz Harp Okulu 2
Ogretim Kurulu IBaskanfigi
TIuzia - Istanbul, TURKEY

9. 0. D. T. U. KutuphanesiI
Orta Dogu Teknik Universitesi
Ankara, TFURKEY

10. 1 lacettepe Universitesi KutuphanesiI
1 lacettepe Universitesi, Beytepe
Ankara, TURKEY

11. Naval Ocean Systems CenterI
Attn. Library
San Diego, Califiornia 92152

117


